
Chapter 2

Metric Spaces
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A metric space is a mathematical object in which the distance between two points is
meaningful. Metric spaces constitute an important class of topological spaces. We intro-
duce metric spaces and give some examples in Section 1. In Section 2 open and closed sets
are introduced and we discuss how to use them to describe the convergence of sequences
and the continuity of functions. Relevant notions such as the boundary points, closure
and interior of a set are discussed. Compact sets are introduced in Section 3 where the
equivalence between the Bolzano-Weierstrass formulation and the finite cover property is
established. In Sections 4 and 5 we turn to complete metric spaces and the contraction
mapping principle. As an application of the latter, we study the initial value problem for
differential equations and establish the fundamental existence and uniqueness theorem in
Section 6.

2.1 Metric Spaces

Throughout this chapter X always denotes a non-empty set. We would like to define a
concept of distance which assigns a positive number to every two distinct points in X.
In analysis the name metric is used instead of distance. ( But “d” not “m” is used in
notation. I have no idea why it is so.) A metric on X is a function from X×X to [0,∞)
which satisfies the following three conditions: ∀x, y, z ∈ X,

M1. d(x, y) ≥ 0 and equality holds if and only if x = y,

M2. d(x, y) = d(y, x), and

M3. d(x, y) ≤ d(x, z) + d(z, y).

The last condition, the triangle inequality, is a key property of a metric. M2 and M3
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together imply another form of triangle inequality,

|d(x, y)− d(x, z)| ≤ d(y, z).

The pair (X, d) is called a metric space. Let x ∈ X and r > 0, the metric ball or
simply the ball Br(x) is the set {y ∈ X : d(y, x) < r}.

Here are some examples of metric spaces.

Example 2.1. Let R be the set of all real numbers. For x, y ∈ R, we define d(x, y) = |x−y|
where |x| denotes the absolute value of x. It is easily seen that d(·, ·) satisfies M1-M3
above and so it defines a metric. In particular, M3 reduces to the usual triangle inequality.
Thus (R, d) is a metric space. From now on whenever we talk about R, it is understood
that it is a metric space endowed with this metric.

Example 2.2. More generally, let Rn be the n-dimensional real vector space consisting
of all n-tuples x = (x1, . . . , xn), xj ∈ R, j = 1, . . . , n. For x, y ∈ Rn, introduce the
Euclidean metric

d2(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

=
( n∑
j=1

(xj − yj)2
) 1

2 .

It reduces to Example 1 when n = 1. Apparently, M3 and M2 are fulfilled. To verify the
triangle inequality, letting u = x− z and v = x− y, M3 becomes

( n∑
1

(uj + vj)
2
)1/2 ≤ ( n∑

1

u2j
)1/2

+
( n∑

1

v2j
)1/2

.

Taking square, we see that it follows from Cauchy-Schwarz inequality∣∣∣ n∑
1

ujvj

∣∣∣ ≤ ( n∑
1

u2j
)1/2( n∑

1

v2j
)1/2

.

In case you do not recall its proof, look up a book. We need to use mathematics you
learned in all previous years. Take this as a chance to refresh them.

Example 2.3. It is possible to have more than one metrics on a set. Again consider Rn.
Instead of the Euclidean metric, we define

d1(x, y) =
n∑
j=1

|xj − yj|

and
d∞(x, y) = max {|x1 − y1| , . . . , |xn − yn|} .
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It is not hard to verify that d1 and d∞ are also metrics on Rn. We denote the metric balls
in the Euclidean, d1 and d∞ metrics by Br(x), B1

r (x) and B∞r (x) respectively. Br(x) is
the standard ball of radius r centered at x and B∞r (x) is the cube of length r centered at
x. I let you draw and tell me what B1

r (x) looks like.

Example 2.4. Let C[a, b] be the real vector space of all continuous, real-valued functions
on [a, b]. For f, g ∈ C[a, b], define

d∞(f, g) = ‖f − g‖∞ ≡ max {|f(x)− g(x)| : x ∈ [a, b]} .

It is easily checked that d∞ is a metric on C[a, b]. The metric ball Br(f) in the uniform
metric consists of all continuous functions sitting inside the “tube”

{(x, y) : |y − f(x)| < r, x ∈ [a, b]} .

Another metric defined on C[a, b] is given by

d1(f, g) =

ˆ b

a

|f − g|.

It is straightforward to verify M1-M3 are satisfied. In Section 1.5 we encountered the
L2-distance. Indeed,

d2(f, g) =

√ˆ b

a

|f − g|2,

really defines a metric on C[a, b]. The verification of M3 to similar to what we did in
Example 2.2, but Cauchy-Schwarz inequality is now in integral form

ˆ b

a

∣∣fg∣∣ ≤
√ˆ b

a

f 2

√ˆ b

a

g2.

In passing we point out same notations such as d1 and d2 have been used to denote
different metrics. They arise in quite different context though. It should not cause
confusion.

Example 2.5. Let R[a, b] be the vector space of all Riemann integrable functions on [a, b]
and consider d1(f, g) as defined in the previous example. One can show that M2 and M3
are satisfied, but not M1. In fact,

ˆ b

a

|f − g| = 0

does not imply that f is equal to g. It tells us they differ on a set of measure zero. This
happens, for instance, they are equal except at finitely many points. To construct a metric
space out of d1, we introduce a relation on R[a, b] by setting f ∼ g if and only if f and g
differ on a set of measure zero. It is routine to verify that ∼ is an equivalence relation.
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Let R̃[a, b] be the equivalence classes of R[a, b] under this relation. We define a metric on

R̃[a, b] by, ∀f, g ∈ R̃[a, b],

d̃1(f, g) = d1(f, g), f ∈ f, g ∈ g.

Then (R̃[a, b], d̃1) forms a metric space. I let you verify that d̃1 is well-defined, that is,

it is independent of the choices of f and g, and is a metric on (R̃[a, b], d̃1). A similar

consideration applies to the L2-distance to get a metric d̃2.

A norm ‖ · ‖ is a function on a real vector space X to [0,∞) satisfying the following
three conditions, for all x, y ∈ X and α ∈ R,

N1. ‖x‖ ≥ 0 and “=” 0 if and only if x = 0

N2. ‖αx‖ = |α| ‖x‖, and

N3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The pair (X, ‖ · ‖) is called a normed space. There is always a metric associated to
a norm. Indeed, letting

d(x, y) = ‖x− y‖,

it is readily checked that d defines a metric on X. This metric is called the metric in-
duced by the norm. In all the five examples above the metrics are induced respectively
from norms. I leave it to you to write down the corresponding norms. Normed spaces will
be studied in MATH4010 Functional Analysis. In the following we give two examples of
metrics defined on a set without the structure of a vector space. Hence they cannot be
metrics induced by norms.

Example 2.6. Let X be a non-empty set. For x, y ∈ X, define

d(x, y) =

{
1, x 6= y,
0, x = y.

The metric d is called the discrete metric on X. The metric ball Br(x) consists of x
itself for all r ∈ (0, 1).

Example 2.7. Let H be the collection of all strings of words in n digits. For two strings
of words in H, a = a1 · · · an, b = b1 · · · bn, aj, bj ∈ {0, 1, 2, . . . , 9}. Define

dH(a, b) = the number of digits at which aj is not equal to bj.

By using a simple induction argument one can show that (H, dH) forms a metric space.
Indeed, the case n = 1 is straightforward. Let us assume it holds for n-strings and
show it for (n + 1)-strings. Let a = a1 · · · anan+1, b = b1 · · · bnbn+1, c = c1 · · · cncn+1, a

′ =
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a1 · · · an, b′ = b1 · · · bn, and c′ = c1 · · · cn. Consider the case that an+1 = bn+1 = cn+1.
We have dH(a, b) = dH(a′, b′) ≤ dH(a′, c′) + dH(c′, b′) = dH(a, c) + dH(c, b) by induction
hypothesis. When an+1 is not equal to one of bn+1, cn+1, say, an+1 6= bn+1, we have
dH(a, b) = dH(a′, b′)+1 ≤ dH(a′, c′)+dH(c′, b′)+1. If bn+1 = cn+1, dH(a, c) = dH(a′, c′)+1.
Therefore, dH(a′, c′) + dH(c′, b′) + 1 ≤ dH(a, c) + dH(c, b). If bn+1 6= cn+1, dH(c′, b′) =
dH(c, b) − 1 and the same inequality holds. Finally, if an+1 6= cn+1 and an+1 = bn+1,
dH(a, b) = dH(a′, b′) ≤ dH(a′, c′) + dH(c′, b′) ≤ dH(a, c) − 1 + dH(c, b) − 1 ≤ dH(a, c) +
dH(c, b). The metric dH is called the Hamming distance. It measures the error in a
string during transmission.

Let Y be a non-empty subset of (X, d). Then (Y, d|Y×Y ) is again a metric space. It
is called a metric subspace of (X, d). The notation d|Y×Y is usually written as d for
simplicity. Every non-empty subset of a metric space forms a metric space under the
restriction of the metric. In the following we usually call a metric subspace a subspace for
simplicity. Note that a metric subspace of a normed space needs not be a normed space.
It is so only if the subset is also a vector subspace.

Recall that convergence of sequences of real numbers and uniform convergence of se-
quences of functions are main themes in MATH2050/60 and sequences of vectors were
considered in MATH2010/20. With a metric d on a set X, it makes sense to talk about
limits of sequences in a metric space. Indeed, a sequence in (X, d) is a map ϕ from N to
(X, d) and usually we write it in the form {xn} where ϕ(n) = xn. We call {xn} converges
to x if limn→∞ d(xn, x) = 0, that’s, for every ε > 0, there exists n0 such that d(xn, x) < ε,
for all n ≥ n0. When this happens, we write or limn→∞ xn = x or xn → x in X.

Convergence of sequences in (Rn, d2) reduces to the old definition we encountered
before. From now on, we implicitly refer to the Euclidean metric when convergence of
sequences in Rn is considered. For sequences of functions in (C[a, b], d∞), it is simply the
uniform convergence of sequences of functions in C[a, b].

As there could be more than one metrics defined on the same set, it is natural to make
a comparison among these metrics. Let d and ρ be two metrics defined on X. We call ρ
is stronger than d, or d is weaker than ρ, if there exists a positive constant C such that
d(x, y) ≤ Cρ(x, y) for all x, y ∈ X. They are equivalent if d is stronger and weaker than
ρ simultaneously, in other words,

d(x, y) ≤ C1ρ(x, y) ≤ C2d(x, y), ∀x, y ∈ X,

for some positive C1 and C2. When ρ is stronger than d, a sequence converging in ρ is
also convergent in d. When d and ρ are equivalent, a sequence is convergent in d if and
only if it is so in ρ.

Take d1, d2 and d∞ on Rn as an example. It is elementary to show that for all x, y ∈ Rn,

d2(x, y) ≤ n1/2d∞(x, y) ≤ n1/2d2(x, y),
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and
d1(x, y) ≤ nd∞(x, y) ≤ nd1(x, y),

hence d1, d2 and d∞ are all equivalent. The convergence of a sequence in one metric
implies its convergence in other two metrics.

It is a basic result in functional analysis that every two induced metrics in a finite
dimensional normed space are equivalent. Consequently, examples of inequivalent metrics
can only be found when the underlying space is of infinite dimensional.

Let us display two inequivalent metrics on C[a, b]. For this purpose it suffices to
consider d1 and d∞. On one hand, clearly we have

d1(f, g) ≤ (b− a)d∞(f, g), ∀f, g ∈ C[a, b],

so d∞ is stronger than d1. But the converse is not true. Consider the sequence given by
(taking [a, b] = [0, 1] for simplicity)

fn(x) =

{
−n3x+ n, x ∈ [0, 1/n2],
0, x ∈ (1/n2, 1].

We have d1(fn, 0)→ 0 but d∞(fn, 0)→∞ as n→∞. Were d∞(fn, 0) ≤ Cd1(fn, 0) true
for some positive constant C, d1(fn, 0) must tend to ∞ as well. Now it tends to 0, so d1
cannot be stronger than d2 and these two metrics are not equivalent.

Now we define continuity in a metric space. Recalling that for a real-valued function
defined on some set E in R, there are two equivalent ways to define the continuity of the
function at a point. We could use either the behavior of sequences or the ε-δ formulation.
Specifically, the function f is continuous at x ∈ E if for every sequence {xn} ⊂ E
satisfying limn→∞ xn = x, limn→∞ f(xn) = f(x). Equivalently, for every ε > 0, there
exists some δ > 0 such that |f(y)−f(x)| < ε whenever y ∈ E, |y−x| < δ. Both definition
can be formulated on a metric space. Let (X, d) and (Y, ρ) be two metric spaces and
f : (X, d) → (Y, ρ). Let x ∈ X. We call f is continuous at x if f(xn) → f(x) in (Y, ρ)
whenever xn → x in (X, d). It is continuous on a set E ⊂ X if it is continuous at every
point of E.

Proposition 2.1. Let f be a mapping from (X, d) to (Y, ρ) and x0 ∈ X. Then f is
continuous at x0 if and only if for every ε > 0, there exists some δ > 0 such that
ρ(f(x), f(x0)) < ε for all x, d(x, x0) < δ.

Proof. ⇐) Let ε be given and δ is chosen accordingly. For any {xn} → x0, given δ > 0,
there exists some n0 such that d(xn, x0) < δ ∀n ≥ n0. It follows that ρ(f(xn), f(x0)) < ε
for all n ≥ n0, so f is continuous at x0.

⇒) Suppose that the implication is not valid. There exist some ε0 > 0 and {xk} ∈ X
satisfying d(f(xk), f(x0)) ≥ ε0 and d(xk, x0) < 1/k. However, the second condition tells
us that {xk} → x0, so by the continuity at x0 one should have d(f(xk), f(x0)) → 0,
contradiction holds.
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We will shortly use open/closed sets to describe continuity in a metric space.

As usual, continuity of functions is closed under compositions of functions.

Proposition 2.2. Let f : (X, d)→ (Y, ρ) and g : (Y, ρ)→ (Z,m) be given.

(a) If f is continuous at x and g is continuous at f(x), then g ◦ f : (X, d)→ (Z,m) is
continuous at x.

(b) If f is continuous in X and g is continuous in Y , then g ◦ f is continuous in X.

Proof. It suffices to prove (a). Let xn → x. Then f(xn) → f(x) as f is continuous at x.
Then (g ◦ f)(xn) = g(f(xn))→ g(f(x)) = (g ◦ f)(x) as g is continuous at f(x).

2.2 Open and Closed Sets

The existence of a metric on a set enables us to talk about convergence of a sequence
and continuity of a map. It turns that in order to define continuity it requires structure
less stringent then a metric structure. It suffices the set is endowed with a topological
structure. In a word, a metric induces a topological structure on the set but not every
topological structure comes from a metric. In a topological space, continuity can no
longer be defined via the convergence of sequences. Instead one uses the notion of open
and closed sets in the space. As a warm up for topology we discuss how to use the
language of open/closed sets to describe the convergence of sequences and the continuity
of functions in this section.

Let (X, d) be a metric space. A set G ⊂ X is called an open set if for each x ∈ G,
there exists some ρ such that Bρ(x) ⊂ G. The number ρ may vary depending on x. We
also define the empty set φ to be an open set.

Proposition 2.3. Let (X, d) be a metric space. We have

(a) X and φ are open sets.

(b) If
⋃
α∈AGα is an open set provided that all Gα, α ∈ A, are open where A is an

arbitrary index set.

(c) If G1, . . . , GN are open sets, then
⋂N
j=1Gj is an open set.

Note the union in (b) of this proposition is over an arbitrary collection of sets while
the intersection in (c) is a finite one.
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Proof. (a) Obvious.

(b) Let x ∈
⋃
α∈AGα. There exists some α1 such that x ∈ Gα1 . As Gα1 is open, there

is some Bρ(x) ⊂ Gα1 . But then Bρ(x) ⊂
⋃
α∈AGα, so

⋃
α∈AGα is open.

(c) Let x ∈
⋂N
j=1Gj. For each j, there exists Bρj(x) ⊂ Gj. Let ρ = min {ρ1, . . . , ρN}.

Then Bρ(x) ⊂
⋂N
j=1Gj, so

⋂N
j=1Gj is open.

The complement of an open set is called a closed set. Taking the complement of
Proposition 2.2, we have

Proposition 2.4. Let (X, d) be a metric space. We have

(a) X and φ are closed sets.

(b) If Fα, α ∈ A, are closed sets, then
⋂
α∈A Fα is a closed set.

(c) If F1, . . . , FN are closed sets, then
⋃N
j=1 Fj is a closed set.

Note that X and φ are both open and closed.

Example 2.8. Every ball in a metric space is an open set. Let Br(x) be a ball and
y ∈ Br(x). We claim that Bρ(y) ⊂ Br(x) where ρ = r − d(y, x) > 0. For, if z ∈ Bρ(y),

d(z, x) ≤ d(z, y) + d(y, x)

< ρ+ d(y, x)

= r ,

by the triangle inequality, so z ∈ Br(x) and Bρ(y) ⊂ Br(x) holds. Next, the set E = {y ∈
X : d(y, x) > r} for fixed x and r ≥ 0 is an open set. For, let y ∈ E, d(y, x) > r. We
claim Bρ(y) ⊂ E, ρ = d(y, x)− r > 0,. For, letting z ∈ Bρ(y),

d(z, x) ≥ d(y, x)− d(y, z)

> d(y, x)− ρ
= r,

shows that Bρ(y) ⊂ E, hence E is open. Finally, consider F = {x ∈ X : d(x, z) = r > 0}
where z and r are fixed. Observing that F is the complement of the two open sets Br(z)
and {x ∈ X : d(x, z) > r}, we conclude that F is a closed set.

Example 2.9. In the real line every open interval (a, b), −∞ ≤ a ≤ b ≤ ∞, is an open
set. Other intervals such as [a, b), [a, b], (a, b], a, b ∈ R, are not open. It can be shown
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that every open set G in R can be written as a disjoint union of open intervals. Letting
(an, bn) = (−1/n, 1/n),

∞⋂
n=1

(
− 1

n
,

1

n

)
= {0}

is not open. It shows that Proposition 2.2(c) does not hold when the intersection is over
infinite many sets. On the other hand, [a, b] is a closed set since {a} = R\(−∞, a)∪(a,∞),
a single point is always a closed set. Finally, some sets we encounter often are neither
open nor closed. Take the set of all rational numbers as example, as every open interval
containing a rational number also contains an irrational number, we see that Q is not
open. The same reasoning shows that the set of all irrational numbers is not open, hence
Q is also not a closed set.

Example 2.10. When we studied multiple integrals in MATH2020, we encountered many
domains or regions as the domain of integration. These domains are open sets in Rn. For
instance, consider the set G = {(x1, x2) ∈ R2 : x21/4 + x22/9 < 1} which is the set of all
points lying inside an ellipse. We claim that it is an open set. Each point (y1, y2) ∈ G
satisfies the inequality

y21
4

+
y22
9
< 1.

Since the function (x1, x2) 7→ x21/4 + x22/9− 1 is continuous, there exists some ε > 0 such
that

z21
4

+
z22
9
< 1,

for all (z1, z2), d((z1, z2), (y1, y2)) < ε. In other words, the ball Bε((y1, y2)) is contained in
G, so G is open. Similarly, one can show that the outside of the ellipse, denoted by H, is
open (using the fact x21/4 + x22/9 > 1 in H) and the set composed of all points lying on
the ellipse, denoted by S, is closed. Finally, the set G∪S is closed as its complement H is
open. In general, most domains in R2 in advanced calculus consist of points bounded by
one or several continuous curves. They are all open sets like G. All points lying outside
of the boundary curves form an open set and those lying on the curves form a closed set.
The points sitting inside and on the curves form an closed set. The situation extends to
higher dimensional domains whose boundary are given by finitely many pieces of contin-
uous hypersurfaces.

Example 2.11. Consider the set E = {f ∈ C[a, b] : f(x) > 0, ∀x ∈ [a, b]} in C[a, b]. We
claim that it is open. For f ∈ E, it is positive everywhere on the closed, bounded interval
[a, b], hence it attains its minimum at some x0. It follows that f(x) ≥ m ≡ f(x0) > 0.
Letting r = m/2, for g ∈ Br(f), d∞(g, f) < r = m/2 implies

g(x) ≥ f(x)− |g(x)− f(x)|
> m− m

2

=
m

2
> 0,
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for all x ∈ [a, b], hence g ∈ E which implies Br(f) ⊂ E, E is open. Likewise, sets like
{f : f(x) > α, ∀x}, {f : f(x) < α, ∀x} where α is a fixed number. On the other hand,
by taking complements of these open sets, we see that the sets {f : f(x) ≥ α, ∀x}, {f :
f(x) ≤ α, ∀x} are closed.

Example 2.12. Consider the extreme case where the spaceX is endowed with the discrete
metric. We claim that every set is open and closed. Clearly, it suffices to show that every
singleton set {x} is open. But, this is obvious because the ball B1/2(x) = {x} belongs to
{x}. It is also true that Br(x) = X once r > 1.

We now use open sets to describe the convergence of sequences.

Proposition 2.5. Let (X, d) be a metric space. A sequence {xn} converges to x if and
only if for each open G containing x, there exists n0 such that xn ∈ G for all n ≥ n0.

Proof. Let G be an open set containing x. According to the definition of an open set,
we can find Bε(x) ⊂ G. It follows that there exists n0 such that d(xn, x) < ε for all
n ≥ n0, i.e., xn ∈ Bε(x) ⊂ G for all n ≥ n0. Conversely, taking G = Bε(x), we see that
xn → x.

From this proposition we deduce the following result which explains better the termi-
nology of a closed set.

Proposition 2.6. The set A is a closed set in (X, d) if and only if whenever {xn} ⊂ A
and xn → x as n→∞ implies that x belongs to A.

Proof. ⇒). Assume on the contrary that x does not belong to A. As X \ A is an open
set, by Proposition 2.4 we can find a ball Bε(x) ⊂ X \ A. However, as xn → x, there
exists some n0 such that xn ∈ Bε(x) for all n ≥ n0, contradicting the fact that xn ∈ A.

⇐). If X \A is not open, say, we could find a point x ∈ X \A such that B1/n(x)
⋂
A 6= φ

for all n. Pick xn ∈ B1/n(x)
⋂
A to form a sequence {xn}. Clearly {xn} converges to x.

By assumption, x ∈ A, contradiction holds. Hence X \ A must be open.

Now we use open sets to describe the continuity of functions.

Proposition 2.7. Let f : (X, d)→ (Y, ρ).

(a) f is continuous at x if and only if for every open set G containing f(x), f−1(G)
contains Bε(x) for some ε > 0.

(b) f is continuous in X if and only if for every open G in Y , f−1(G) is an open set in
X.
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These statements are still valid when “open” is replaced by “closed”.

Proof. We consider (a) and (b) comes from (a) easily.

⇒). Suppose there exists some open G such that f−1(G) does not contain B1/n(x) for all
n ≥ 1. Pick xn ∈ B1/n(x), xn /∈ f−1(G). Then xn → x but f(xn) does not converge to x,
contradicting the continuity of f .

⇐). Let {xn} → x in X. Given any open set G containing f(x), we can find Br(x) ⊂
f−1(G). Thus, there exists n0 such that xn ∈ Br(x) for all n ≥ n0. It follows that
f(xn) ∈ G for all n ≥ n0. By Proposition 2.4, f is continuous at x.

Let Y be a subspace of (X, d). We describe the open sets in Y . First of all, the metric
ball in (Y, d) is given by B′r(x) = {y ∈ Y : d(y, x) < r} which is equal to Br(x) ∩ Y . For
an open set E in Y , for each x ∈ E there exists some B′ρx(x), such that B′ρx(x) ⊂ E.
Therefore,

E =
⋃

B′ρx(x) =
⋃

(Bρx(x) ∩ Y ) =
(⋃

Bρx(x)
)
∩ Y.

We conclude

Proposition 2.8. Let Y be a subspace of (X, d). A set E in Y is open in Y if and only
if there exists an open set G in (X, d) satisfying E = G ∩ Y . It is closed if and only if
there exists a closed set F in (X, d) satisfying E = F ∩ Y .

Example 2.13. Let [0, 1] be the subspace of R under the Euclidean metric. The set
[0, 1/2) is not open in R as every open interval of the form (a, b), a < 0 < b, is not
contained in [0, 1/2), so 0 is not an interior point of [0, 1). However, it is relatively
open in [0, 1) because when regarded as a subset of [0, 1), the set [0, a), 1/2 > a > 0,
is an open set (relative in [0, 1)) contained in [0, 1/2). For, by the proposition above,
[0, a) = (−1, a) ∩ [0, 1) is relatively open.

We describe some further useful notions associated to sets in a metric space.

Let E be a set in (X, d). A point x is called a boundary point of E if G∩E and G\E
are non-empty for every open set G containing x. Of course, it suffices to take G of the
form Bε(x) for all sufficiently small ε or ε = 1/n, n ≥ 1. We denote the boundary of E by
∂E. The closure of E, denoted by E, is defined to be E ∪ ∂E. Clearly ∂E = ∂(X \ E).
The boundary of the ball Br(x) in Rn is the sphere Sr(x) = {y ∈ Rn : d2(y, x) = r}.
Hence, the closed ball Br(x) is given by Br(x)

⋃
Sr(x), which is precisely the closure of

Br(x).
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Example 2.14. Let E = [0, 1)× [0, 1). It is easy to see that ∂E = [0, 1]×{0, 1}∪{0, 1}×
[0, 1]. Thus some points in ∂E belong to E and some do not. The closure of E, E, is
equal to [0, 1]× [0, 1].

It can be seen from definition that the boundary of the empty set is the empty set and
the boundary of a set is always a closed set. For, let {xn} be a sequence in ∂E converging
to some x. For any ball Br(x), we can find some xn in it, so the ball Bρ(xn), ρ =
r − d(xn, x) > 0, is contained in Br(x). As xn ∈ ∂E, Bρ(xn) has non-empty intersection
with E and X \E, so does Br(x) and x ∈ ∂E too. The following proposition characterizes
the closure of a set as the smallest closed set containing this set.

Proposition 2.9. Let E be a set in (X, d). We have

E =
⋂
{C : C is a closed set containing E}.

Proof. We first claim that E is a closed set. We will do this by showing X \ E is open.
Indeed, for x lying outside E, x does not belong to E and there exists an open ball Bρ(x)
disjoint from E. Thus, E is disjoint from Bρ/2(x) and so X \ E is open. We conclude
that E is closed. Next we claim that E is contained in any closed set C containing E.
It suffices to show that ∂E ⊂ C. Indeed, if x ∈ ∂E, every ball B1/n(x) would have non-
empty intersection with E. By picking a point xn from B1/n(x)∩E, we obtain a sequence
{xn} in E converging to x as n → ∞. As C is closed, x belongs to C by Proposition
2.5.

A point x is called an interior point of E if there exists an open set G containing
x such that G ⊂ E. It can be shown that all interior points of E form an open set call
the interior of E, denoted by Eo. It is not hard to see that E0 = E \ ∂E. The interior
of a set is related to its closure by the following relation: Eo = X \

(
X \ E

)
. Using this

relation, one can show that the interior of a set is the largest open set sitting inside E.
More precisely, G ⊂ E0 whenever G is an open set in E.

Example 2.15. In Example 2.10 we consider domains in R2 bounded by several pieces
of continuous curves. Let D be such a domain and the curves bounding it be S. It is
routine to verify that ∂D = S, that is, the set of all boundary points of D is precisely the
S and the closure of D, D, is D ∪ S. The interior of D is D.

2.3 Compactness

Recall that Bolzano-Weierstrass theorem asserts that every sequence in a closed bounded
interval has a convergent subsequence in this interval. The result still holds for all closed,
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bounded sets in Rn. In general, a set E ⊂ (X, d) is compact if every sequence has a con-
vergent subsequence with limit in E. This property is also called sequentially compact
to stress that the behavior of sequences is involved in the definition. The space (X, d)
is called a compact space is X is a compact set itself. According to this definition,
every interval of the form [a, b] is compact in R and sets like [a1, b1]× [a2, b2]× · · · [an, bn]
and Br(x) are compact in Rn under the Euclidean metric. In a general metric space, the
notion of a bounded set makes perfect sense. Indeed, a set A is called a bounded set if
there exists some ball Br(x) for some x ∈ X and r > 0 such that A ⊂ Br(x). Now we in-
vestigate the relation between a compact set and a closed bounded set. First of all, we have

Proposition 2.10. Every compact set in a metric space is closed and bounded.

Proof. Let K be a compact set. To show that it is closed, let {xn} ⊂ K and xn → x.
We need to show that x ∈ K. As K is compact, there exists a subsequence {xnj} ⊂ K
converging to some z in K. By the uniqueness of limit, we have x = z ∈ K, so x ∈ K
and K is closed. On the other hand, if K is unbounded, that is, for any fixed point x0,
K is not contained in the balls Bn(x0) for all n. Picking xn ∈ K \ Bn(x0), we obtain a
sequence {xn} satisfying d(xn, x0)→∞ as n→∞. By the compactness of K, there is a
subsequence {xnj} converging to some z in K. By the triangle inequality,

∞ > d(z, x0) = lim
j→∞

d(xnj , z) + d(z, x0)

≥ lim
j→∞

d(xnj , x0)→∞,

as j →∞, contradiction holds. Hence K must be bounded.

As a consequence of Bolzano-Weierstrass theorem every sequence in a bounded and
closed set in Rn contains a convergent subsequence. Thus a set in Rn is compact if and
only if it is closed and bounded. Proposition 2.10 tells that every compact set is in general
closed and bounded, but the converse is not always true. To describe an example we need
to go beyond Rn where we can be free of the binding of Bolzano-Weierstrass theorem.
Consider the set S = {f ∈ C[0, 1] : 0 ≤ f(x) ≤ 1}. Clearly it is closed and bounded in
C[0, 1]. We claim that it is not compact. For, consider the sequence {fn} in (C[0, 1], d∞)
given by

fn(x) =

{
nx, x ∈ [0, 1

n
]

1, x ∈ [ 1
n
, 1].

{fn(x)} converges pointwisely to the function f(x) = 1, x ∈ (0, 1] and f(0) = 0 which is
discontinuous at x = 0, that is, f does not belong to C[0, 1]. If {fn} has a convergent
subsequences, then it must converge uniformly to f . But this is impossible because the
uniform limit of a sequence of continuous functions must be continuous. Hence S cannot
be compact. In fact, a remarkable theorem in functional analysis asserts that the closed
unit ball in a normed space is compact if and only if the normed space if and only if the
normed space is of finite dimension.
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Since convergence of sequences can be completely described in terms of open/closed
sets, it is natural to attempt to describe the compactness of a set in terms of these new
notions. The answer to this challenging question is a little strange at first sight. We
introduce some terminologies. First of all, an open cover of a subset E in a metric space
(X, d) is a collection of open sets {Gα}, α ∈ A, satisfying E ⊂

⋃
α∈AGα. A set E ⊂ X

satisfies the finite cover property if whenever {Gα}, α ∈ A, is an open cover of E, there
exist a subcollection consisting of finitely many Gα1 , . . . , GαN such that E ⊂

⋃N
j=1Gαj .

(“Every open cover has a finite subcover.”) A set E satisfies the finite intersection
property if whenever {Fα} , α ∈ A, are relatively closed sets in E satisfying

⋂N
j=1 Fαj 6= φ

for any finite subcollection Fαj ,
⋂
α∈A Fα 6= φ. Here a set F ⊂ E is relatively closed means

F is closed in the subspace E. We know that it implies F = A∩E for some closed set A.
Therefore, when E is closed, a relatively closed subset is also closed.

Proposition 2.11. A closed set has the finite cover property if and only if it has the
finite intersection property.

Proof. Let E be a non-empty closed set in (X, d).

⇒) Suppose {Fα}, Fα closed sets contained in E, satisfies
⋂N
j=1 Fαj 6= φ for any finite

subcollection but
⋂
α∈A Fα = φ. As E is closed, each Fα is closed in X, and

E = E \
⋂
α∈A

Fα =
⋃
α∈A

(E ∩ F ′α) ⊂
⋃
α∈A

F ′α.

By the finite covering property we can find α1, . . . , αN such that E ⊂
⋃N
j=1 F

′
αj

, but then

φ = E \ E ⊃ E \
⋃N

1 F
′
αj

=
⋂N
j=1 Fαj , contradiction holds.

⇐) If E ⊂
⋃
Gα∈A but E (

⋃N
j=1Gαj for any finite subcollection of A, then

φ 6= E \
N⋃
j=1

Gαj =
N⋂
j=1

(
E \Gαj

)
which implies

⋂
α∈A

(
E \ Gα

)
6= φ by the finite intersection property. Note that each

E \ Gαj is closed. Using E
⋂(⋃

α∈AGα

)′
=
⋂
α∈A

(
E \ Gα

)
, we have E (

⋃
α∈AGα,

contradicting our assumption.

Proposition 2.12. Let E be compact in a metric space. For each α > 0, there exist
finitely many balls Bα(x1), . . . , Bα(xN) such that E ⊂

⋃N
j=1Bα(xj) where xj, 1 ≤ j ≤ N,

are in E.

Proof. Pick Bα(x1) for some x1 ∈ E. Suppose E \ Bα(x1) 6= φ. We can find x2 /∈ Bα(x1)
so that d(x2, x1) ≥ α. Suppose E \

(
Bα(x1)

⋃
Bα(x2)

)
is non-empty. We can find x3 /∈
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Bα(x1)
⋃
Bα(x2) so that d(xj, x3) ≥ α, j = 1, 2. Keeping this procedure, we obtain a

sequence {xn} in E such that

E \
n⋃
j=1

Bα(xj) 6= φ and d(xj, xn) ≥ α, j = 1, 2, . . . , n− 1.

By the compactness of E, there exists
{
xnj
}

and x ∈ E such that xnj → x as j → ∞.
But then d(xnj , xnk) < d(xnj , x)+d(xnk , x)→ 0, contradicting d(xj, xn) ≥ α for all j < n.

Hence one must have E \
⋃N
j=1Bα(xj) = φ for some finite N .

Sometimes the following terminology is convenient. A set E is called totally bounded
if for each ε > 0, there exist x1, · · · , xn ∈ X such that E ⊂ ∪nk=1Bε(xk). Proposition 2.12
simply states that every compact set is totally bounded. We will use this property of a
compact set again in the next chapter.

Theorem 2.13. Let E be a closed set in (X, d). The followings are equivalent:

(a) E is compact;

(b) E satisfies the finite cover property; and

(c) E satisfies the finite intersection property.

Proof. (a)⇒ (b). Let {Gα} be an open cover of E without finite subcover and we will
draw a contradiction. By Proposition 2.11, for each k ≥ 1, there are finitely many balls
of radius 1/k covering E. We can find a set B1/k ∩ E (suppress the irrelevant center)
which cannot be covered by finitely many members in {Gα}. Pick xk ∈ B1/k ∩E to form
a sequence. By the compactness of E, we can extract a subsequence {xkj} such that
xkj → x for some x ∈ E. Since {Gα} covers E, there must be some Gβ that contains x.
As Gβ is open and the radius of B1/kj tends to 0, we deduce that, for all sufficiently large
kj, B1/kj ∩E is contained in Gβ. In other words, Gβ forms a single subcover of B1/k ∩E,
contradicting our choice of B1/kj ∩ E. Hence (b) must be valid.

(b)⇔ (c). See Proposition 2.11.

(c)⇒ (a). Let {xn} be a sequence in E. Without loss of generality we may assume that
it contains infinitely many distinct points, otherwise the conclusion is obvious. The balls
B1(xn) form an open cover of the set {xn}, hence it has a finite subcover. (Note that a
closed subset of a set satisfying the finite cover property again satisfies the finite cover
property.) Since there are infinitely many distinct points in this sequence, we can choose
one of the these balls, denoted by B1, which contains infinitely many points in E. Next
we cover {xn} by balls B1/2(xn). Among a finite subcover, choose one of the balls B1/2

which contains infinitely many distinct points from B1. Keeping doing this, we obtain a
sequence of balls {B1/k}, k ≥ 1, such that each B1 ∩ · · · ∩ B1/k contains infinitely many
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distinct points in E. We pick a subsequence {xnk} from B1 ∩ · · · ∩ B1/k ∩ E. By the
finite intersection property,

⋂
k

(
B1/k ∩ E

)
is nonempty and in fact consists of one point

z ∈ E. It is clear that d(xnk , z) ≤ 2/k → 0 as k →∞. We have succeeded in producing a
convergent subsequence in the closed set E. Hence E is compact.

We finally note

Proposition 2.14. Let E be a compact set in (X, d) and F : (X, d)→ (Y, ρ) be continu-
ous. Then f(E) is a compact set in (Y, ρ).

Proof. Let {yn} be a sequence in f(E) and let {xn} be in E satisfying f(xn) = yn for all
n. By the compactness of E, there exist some {xnj} and x in E such that xnj → x as
j → ∞. By the continuity of f , we have ynj = f(xnj) → f(x) in f(E). Hence f(E) is
compact.

Can you prove this property by using the finite cover property of compact sets?

There are several fundamental theorems which hold for continuous functions defined
on a closed, bounded set in the Euclidean space. They include a continuous function on
such a set is uniformly continuous and attains its minimum and maximum. Although
they may no longer hold on arbitrary closed, bounded sets in a general metric space, they
continue to hold when the sets are strengthened to compact ones. The proofs are very
much like in the finite dimensional case. I leave them as exercises.

2.4 Completeness

In Rn a basic property is that every Cauchy sequence converges. This property is called
the completeness of the Euclidean space. The notion of a Cauchy sequence is well-defined
in a metric space. Indeed, a sequence {xn} in (X, d) is a Cauchy sequence if for ev-
ery ε > 0, there exists some n0 such that d(xn, xm) < ε, for all n,m ≥ n0. A metric
space (X, d) is complete if every Cauchy sequence converges. A subset E is complete
if (E, d

∣∣
E×E) is complete.

Example 2.16. The interval [a, b] is a complete space. For, if {xn} is a Cauchy sequence
in [a, b], it is also a Cauchy sequence in R. By the completeness of the real line, {xn}
converges to some x. Since [a, b] is closed, x must belong to [a, b], so [a, b] is complete.
In contrast, the set [a, b), b ∈ R, is not complete. For, simply observe that the sequence
{b−1/k}, k ≥ k0 for some large k0, is a Cauchy sequence in [a, b) and yet it does not have
a limit in [a, b) (the limit is b, which lies outside [a, b)).
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Example 2.17. In MATH2060 we learned that every Cauchy sequence in C[a, b] with re-
spect to the sup-norm implies that it converges uniformly, so the limit is again continuous
and C[a, b] is a complete space. The subset E = {f : f(x) ≥ 0, ∀x} is also complete. Let
{fn} be a Cauchy sequence in E, it is also a Cauchy sequence in C[a, b] and hence there
exists some f ∈ C[a, b] such that {fn} converges to f uniformly. As uniform convergence
implies pointwise convergence, f(x) = limn→∞ fn(x) ≥ 0, so f belongs to E and E is
complete. Next, let P [a, b] be the collection of all restriction of polynomials on [a, b]. It
forms a subspace of C[a, b]. Taking the sequence hn(x) given by

hn(x) =
n∑
k=0

xk

k!
,

{hn} is a Cauchy sequence in P [a, b] which converges to ex. As ex is not a polynomial,
P [a, b] is not a complete subset of C[a, b].

Proposition 2.15. Let (X, d) be a metric space.

(a) Every closed set in X is complete provided X is complete.

(b) Every complete set in X is closed.

(c) Every compact set in X is complete.

Proof. (a) Let (X, d) be complete and E a closed subset of X. Every Cauchy sequence
{xn} in E is also a Cauchy sequence in X. By the completeness of X, there is some x
in X to which {xn} converges. However, as E is closed, x also belongs to E. So every
Cauchy sequence in E has a limit in E.

(b) Let E ⊂ X be complete and {xn} a sequence converging to some x in X. Since every
convergent sequence is a Cauchy sequence, {xn} must converge to some z in E. By the
uniqueness of limit, we must have x = z ∈ C, so C is closed.

(c) Let {xn} be a Cauchy sequence in the compact set K. By compactness, there is a
subsequence {xn+j} converging to some x in X. As every compact set is also closed, x
belongs to K. For ε > 0, there exists some n0 such that |xn−xm| < ε/2, for all n,m ≥ n0

and |xnj − x| ≤ ε/2, for nj ≥ n0, it follows that

|xn − x| ≤ |xn − xnj |+ |xnj − x| < ε/2 + ε/2 = ε,

for all n ≥ n0, that is, {xn} converges to x in K.

To obtain a typical non-complete set, we consider the interval [0, 1] in R which is
complete and, in fact, compact. Take away one point z from it to form E = [a, b]\{z}. E
is not complete, since every sequence in E converging to z is a Cauchy sequence which does
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not converge in E. In general, you may think of sets with “holes” being non-complete ones.
Now, given a non-complete metric space, can we make it into a complete metric space
by filling out all the holes? The answer turns out to affirmative. We can always enlarge
a non-complete metric space into a complete one by putting in some ideal points. The
process of achieving this goal was long invented by Cantor (1845–1918) in his construction
of the real numbers from rational numbers. We start with some formalities.

A metric space (X, d) is called embedded in (Y, ρ) if there is a mapping Φ : X → Y
such that d(x, y) = ρ(Φ(x),Φ(y)). The mapping Φ is sometimes called a metric pre-
serving map. Note that it must be 1-1 and continuous. We call the metric space (Y, ρ) a
completion of (X, d) if (X, d) is embedded in (Y, ρ) and Φ(X) = Y . The latter condition
is a minimality condition; (X, d) is enlarged merely to accommodate those ideal points to
make the space complete.

Theorem 2.16. Every metric space has a completion.

Before the proof we briefly describe the idea. When (X, d) is not complete, we need
to invent ideal points and add them to X to make it complete. The idea goes back
to Cantor’s construction of the real numbers from rational numbers. Suppose now we
have only rational numbers and we want to add irrationals. First we identify Q with a
proper subset in a larger set as follows. Let C be the collection of all Cauchy sequences
of rational numbers. Every point in C is of the form (x1, x2, · · · ) where {xn}, xn ∈ Q,
forms a Cauchy sequence. A rational number x is identified with the constant sequence
(x, x, x, . . . ) or any Cauchy sequence which converges to x. For instance, 1 is identi-
fied with (1, 1, 1, . . . ), (0.9, 0.99, 0.999, . . . ) or (1.01, 1.001, 1.0001, . . . ). Clearly, there are
Cauchy sequences which cannot be identified with rational numbers. For instance, there
is no rational number corresponding to (3, 3.1, 3.14, 3.141, 3.1415, . . . ), as we know, its
correspondent should be the irrational number π. Similar situation holds for the sequence
(1, 1.4, 1.41, 1.414, · · · ) which should correspond to

√
2. Since the correspondence is not

injective, we make it into one by introducing an equivalence relation on C Indeed, {xn}
and {yn} are said to be equivalent if |xn − yn| → 0 as n → ∞. The equivalence relation

∼ forms the quotient C/ ∼ which is denoted by C̃. Then x 7→ x̃ sends Q injectively into

C̃. It can be shown that C̃ carries the structure of the real numbers. In particular, those
points not in the image of Q are exactly all irrational numbers. Now, for a metric space
the situation is similar. We let C̃ be the quotient space of all Cauchy sequence in X under
the relation {xn} ∼ {yn} if and only if d(xn, yn)→ 0. Define d̃(x̃, ỹ) = limn→∞ d(xn, yn),

for x ∈ x̃, y ∈ ỹ. We have the embedding (X, d)→ (X̃, d̃), and we can further show that
it is a completion of (X, d).

The following proof is for optional reading. In the exercise a simpler but less instruc-
tive proof of this theorem can be found.

Proof of Theorem 2.16. Let C be the collection of all Cauchy sequences in (M,d). We
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introduce a relation ∼ on C by x ∼ y if and only if d(xn, yn) → 0 as n → ∞. It is

routine to verify that ∼ is an equivalence relation on C. Let X̃ = C/ ∼ and define a map:

X̃ × X̃ 7→ [0,∞) by

d̃(x̃, ỹ) = lim
n→∞

d(xn, yn)

where x = (x1, x2, x3, · · · ) and y = (y1, y2, y3, · · · ) are respective representatives of x̃ and
ỹ. We note that the limit in the definition always exists: For

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

and, after switching m and n,

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(ym, yn).

As x and y are Cauchy sequences, d(xn, xm) and d(ym, yn) → 0 as n,m → ∞, and so
{d(xn, yn)} is a Cauchy sequence of real numbers.

Step 1. (well-definedness of d̃) To show that d̃(x̃, ỹ) is independent of their representatives,
let x ∼ x′ and y ∼ y′. We have

d(xn, yn) ≤ d(xn, x
′
n) + d(x′n, y

′
n) + d(y′n, yn).

After switching x and x′, and y and y′,

|d(xn, yn)− d(x′n, y
′
n)| ≤ d(xn, x

′
n) + d(yn, y

′
n).

As x ∼ x′ and y ∼ y′, the right hand side of this inequality tends to 0 as n→∞. Hence
limn→∞ d(xn, yn) = limn→∞ d(x′n, y

′
n).

Step 2. (d̃ is a metric). Let {xn}, {yn} and {zn} represent x̃, ỹ and z̃ respectively. We
have

d̃(x̃, z̃) = lim
n→∞

(
d(xn, zn)

≤ lim
n→∞

(
d(xn, yn) + d(yn, zn)

)
= lim

n→∞
d(xn, yn) + lim

n→∞
d(yn, zn)

= d̃(x̃, ỹ) + d̃(ỹ, z̃)

Step 3. We claim that there is a metric preserving map Φ : X 7→ X̃ satisfying Φ(X) = X̃.

Given any x in X, the “constant sequence” (x, x, x, · · · ) is clearly a Cauchy sequence.

Let x̃ be its equivalence class in C. Then Φx = x̃ defines a map from X to X̃. Clearly

d̃(Φ(x),Φ(y)) = lim
n→∞

d(xn, yn) = d(x, y)

since xn = x and yn = y for all n, so Φ is metric preserving and it is injective in particular.
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To show that the closure of Φ(X) is X̃, we observe that any x̃ in X̃ is represented by a
Cauchy sequence x = (x1, x2, x3, · · · ). Consider the constant sequence xn = (xn, xn, xn, · · · )
in Φ(X). We have

d̃(x̃, x̃n) = lim
m→∞

d(xm, xn).

Given ε > 0, there exists an n0 such that d(xm, xn) < ε/2 for all m,n ≥ n0. Hence

d̃(x̃, x̃n) = limm→∞ d(xm, xn) < ε for n ≥ n0. That is x̃n → x̃ as n→∞, so the closure of
Φ(M) is precisely M .

Step 4. We claim that (X̃, d̃) is a complete metric space. Let {x̃n} be a Cauchy sequence

in X̃. As Φ(X) is equal to M̃ , for each n we can find a ỹ in Φ(X) such that

d̃(x̃n, ỹn) <
1

n
.

So {ỹn} is also a Cauchy sequence in d̃. Let yn be the point in X so that yn =
(yn, yn, yn, · · · ) represents ỹn. Since Φ is metric preserving, and {ỹn} is a Cauchy se-

quence in d̃, {yn} is a Cauchy sequence in X. Let (y1, y2, y3, · · · ) ∈ ỹ in X̃. We claim that

ỹ = limn→∞ x̃n in X̃. For, we have

d̃(x̃n, ỹ) ≤ d̃(x̃n, ỹn) + d̃(ỹn, ỹ)

≤ 1

n
+ lim

m→∞
d(yn, ym)→ 0

as n→∞. We have shown that d̃ is a complete metric on X̃.

Completion of a metric space is unique once we have clarified the meaning of unique-
ness. Indeed, call two metric spaces (X, d) and (X ′, d′) isometric if there exists a bijective
embedding from (X, d) onto (X ′, d′). Since a metric preserving map is always one-to-one,
the inverse of of this mapping exists and is a metric preserving mapping from (X ′, d′) to
(X, d). So two spaces are isometric provided there is a metric preserving map from one
onto the other. Two metric spaces will be regarded as the same if they are isometric,
since then they cannot be distinguish after identifying a point in X with its image in
X ′ under the metric preserving mapping. With this understanding, the completion of a
metric space is unique in the following sense: If (Y, ρ) and (Y ′, ρ′) are two completions of
(X, d), then (Y, ρ) and (Y ′, ρ′) are isometric. We will not go into the proof of this fact,
but instead leave it to the interested reader. In any case, now it makes sense to use “the
completion” of X to replace “a completion” of X.

2.5 The Contraction Mapping Principle

Solving an equation f(x) = 0, where f is a function from Rn to itself frequently comes
up in application. This problem can be turned into a problem for fixed points. Literally,
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a fixed point of a mapping is a point which becomes unchanged under this mapping. By
introducing the function g(x) = f(x) + x, solving the equation f(x) = 0 is equivalent to
finding a fixed point for g. This general observation underlines the importance of finding
fixed points. In this section we prove the contraction mapping principle, one of the oldest
fixed point theorems and perhaps the most well-known one. As we will see, it has a wide
range of applications.

A map T : (X, d) → (X, d) is called a contraction if there is a constant γ ∈ (0, 1)
such that d(Tx, Ty) ≤ γd(x, y), ∀x, y ∈ X. A point x is called a fixed point of T if
Tx = x. Usually we write Tx instead of T (x).

Theorem 2.17 (Contraction Mapping Principle). Every contraction in a complete
metric space admit a unique fixed point.

Proof. Let T be a contraction in the complete metric space (X, d). Pick an arbitrary
x0 ∈ X and define a sequence {xn} by setting xn = Txn−1 = T nx0, ∀n ≥ 1. We claim
that {xn} forms a Cauchy sequence in X. First of all, by iteration we have

d(T nx0, T
n−1x0) ≤ γd(T n−1x0, T

n−2x0)

·
·
≤ γn−1d(Tx0, x0).

(2.1)

Next, for n ≥ N where N is to be specified in a moment,

d(xn, xN) = d(T nx0, T
Nx0)

≤ γd(T n−1x0, T
N−1x0)

≤ γNd(T n−Nx0, x0).

By the triangle inequality and (2.1),

d(xn, xN) ≤ γN
n−N∑
j=1

d(T n−N−j+1x0, T
n−N−jx0)

≤ γN
n−N∑
j=1

γn−N−jd(Tx0, x0)

<
d(Tx0, x0)

1− γ
γN .

(2.2)

For ε > 0, choose N so large that d(Tx0, x0)γ
N/(1− γ) < ε/2. Then for n,m ≥ N ,

d(xn, xm) ≤ d(xn, xN) + d(xN , xm)

<
2d(Tx0, x0)

1− γ
γN

< ε,
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thus {xn} forms a Cauchy sequence. As X is complete, x = limn→∞ xn exists. By the
continuity of T , limn→∞ Txn = Tx. But on the other hand, limn→∞ Txn = limn→∞ xn+1 =
x. We conclude that Tx = x.

Suppose there is another fixed point y ∈ X. From

d(x, y) = d(Tx, Ty)

≤ γd(x, y),

and γ ∈ (0, 1), we conclude that d(x, y) = 0, i.e., x = y.

Incidentally, we point out that this proof is a constructive one. It tells you how to
find the fixed point starting from an arbitrary point. In fact, letting n → ∞ in (2.2)
and then replacing N by n, we obtain an error estimate between the fixed point and the
approximating sequence {xn}:

d(x, xn) ≤ d(Tx0, x0)

1− γ
γn, n ≥ 1.

Example 2.18. Let us take X to be R. Then T is nothing but a real-valued function
on R. Denoting the identity map x 7→ x by I. A point on the graph of T is given by
(x, Tx) and a point on the graph of I is (x, x). So every intersection point of both graphs
(x, Tx) = (x, x) is a fixed point of T . From this point of view we can see functions may
or may not have fixed points. For instance, the function Tx = x + ex does not have any
fixed point. By drawing graphs one is convinced that there are functions with graphs
lying below the diagonal line and yet whose slope is always less than one but tends to 1
at infinity (see exercise for a concrete one). It shows the necessity of γ ∈ (0, 1). On the
other hand, functions like Sx = x(x− 1)(x+ 2) whose graph intersects the diagonal line
three times, so it has three fixed points. The insight of Banach’s fixed point theorem is to
single out a class of functions which admits one and only one fixed point. The contractive
condition can be expressed as ∣∣∣∣Tx− Tyx− y

∣∣∣∣ < γ, ∀x, y.

It means that the slope of T is always bounded by γ ∈ (0, 1). Let (x, Tx) be a point of
the graph of T and consider the cone emitting from this point bounded by two lines of
slopes ±γ. When T is a contraction, it is clear that its graph lies within this cone. A
moment’s reflection tells us that it must hit the diagonal line exactly once.

Example 2.19. Let f : [0, 1]→ [0, 1] be a continuously differentiable function satisfying
|f ′(x)| < 1 on [0, 1]. We claim that f admits a fixed point. For, by the mean value
theorem, for x, y ∈ [0, 1] there exists some z ∈ (0, 1) such that f(y)− f(x) = f ′(z)(y−x).
Therefore,

|f(y)− f(x)| = |f ′(z)||y − x|
≤ γ|y − x|,
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where γ = supt∈[0,1] |f ′(t)| < 1 (Why?). We see that f is a contraction. By the contraction
mapping principle, it has a fixed point. In fact, by using the mean-value theorem one can
show that every continuous function from [0, 1] to itself admits at least one fixed point.
This is a general fact. According to Brouwer’s fixed point theorem, every continuous maps
from a compact convex set in Rn to itself admits one fixed point. This theorem surely
includes the present case. However, when the set has “non-trivial topology”, fixed points
may not exist. For instance, take X to be A = {(x, y) : 1 ≤ x2 + y2 ≤ 4} and T to be
a rotation. It is clear that T has no fixed point in A. This is due to the topology of A,
namely, it has a hole.

2.6 Picard-Lindelöf Theorem for Differential Equa-

tions

In this section we discuss the fundamental existence and uniqueness theorem for differ-
ential equations. I assume that you learned the skills of solving ordinary differential
equations in MATH3270 so we will focus on the theoretical aspects.

Most differential equations cannot be solved explicitly, in other words, they cannot
be expressed as the composition of elementary functions. Nevertheless, there are two
exceptional classes which come up very often. Let us review them before going into the
theory. The first one is linear equation.

dy

dx
= a(x)y + b(x),

where a and b are continuous functions defined on some interval I. The general solution
of this linear equation is given by the formula

y(x) = eA(x)
(
y0 +

ˆ x

x0

e−A(t)b(t)dt

)
,

where x0 ∈ I, y0 ∈ R, are fixed and A(x) =
´ x
x0
a(t)dt. The second class is the so-called

separable equation
dy

dx
=
f(x)

g(y)
,

where f and g 6= 0 are continuous functions on intervals I and J respectively. Then the
solution can be obtained by an integrationˆ y

y0

g(t)dt =

ˆ x

x0

f(s)ds, x0 ∈ I, y0 ∈ J.

The resulting relation, written as G(y) = F (x), can be converted into y = G−1F (x), a
solution to the equation as immediately verified by the chain rule. These two classes of



24 CHAPTER 2. METRIC SPACES

equations are sufficient for our purpose. More interesting explicitly solvable equations can
be found in texts on ODE’s.

Numerous problems in natural sciences and engineering led to the initial value problem
of differential equations. Let f be a function defined in the rectangle R = [x0 − a, x0 +
a] × [y0 − b, y0 + b] for (x0, y0) ∈ R2 and a, b > 0. We consider the initial value problem
or Cauchy problem {

dy

dx
= f(x, y),

y(x0) = y0.
(2.3)

To solve the Cauchy problem it means to find a function y(x) defined in a perhaps smaller
rectangle, that is, y : [x0−a′, x0 +a′]→ [y0− b, y0 + b], which is differentiable and satisfies
y(x0) = y0 and y′(x) = f(x, y(x)), ∀x ∈ [x0 − a′, x0 + a′], for some 0 < a′ ≤ a. In
general, no matter how nice f is, we do not expect there is always a solution on the entire
[x0 − a, x0 + a]. Let us look at the following example.

Example 2.20. Consider the Cauchy problem{
dy

dx
= 1 + y2,

y(0) = 0.

The function f(x, y) = 1 + y2 is smooth on [−a, a] × [−b, b] for every a, b > 0. However,
a solution, as one can verify immediately, is given by y(x) = tanx which is only defined
on (−π/2, π/2). It shows that even when f is very nice, a′ could be strictly less than a.

The Picard-Lindelöf theorem, sometimes referred to as the fundamental theorem of
existence and uniqueness of differential equations, gives a clean condition on f ensuring
the unique solvability of the Cauchy problem (2.3). This condition imposes a further
regularity condition on f reminding what we did in the convergence of Fourier series.
Specifically, a function f defined in R satisfies the Lipschitz condition if there exists
L > 0 such that

|f(x, y1)− f(x, y2)| ≤ L |y1 − y2| , ∀(x, yi) ∈ R ≡∈ [x0−a, x0+a]×[y0−b, y0+b], i = 1, 2.

Note that in particular means for each fixed x, f is Lipschitz continuous in y. The least
constant L∗ satisfies this relation, given by

L∗ = inf{L : The relation above holds for L},

is called the Lipschitz constant of f . Some authors call any L satisfies the inequality
above a Lipschitz constant. Clearly, we still have

|f(x, y1)− f(x, y2)| ≤ L∗ |y1 − y2| , ∀(x, yi) ∈ R, i = 1, 2.
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Not all continuous functions satisfy the Lipschitz condition. An example is given by the
function f(x, y) = xy1/2 is continuous. I let you verify that it does not satisfy the Lipschitz
condition on any rectangle containing the origin.

A C1-function f(x, y) in a rectangle automatically satisfies the Lipschitz condition.
For, by the mean-value theorem, for some z lying on the segment between y1 and y2,

f(x, y2)− f(x, y1) =
∂f

∂y
(x, z)(y2 − y1).

Letting

L = max
{ ∣∣∣∣∂f∂y (x, y)

∣∣∣∣ : (x, y) ∈ R
}
,

(L is finite because ∂f/∂y is continuous on R and hence bounded), we have

|f(x, y2)− f(x, y1)| ≤ L|y2 − y1|, ∀(x, yi) ∈ R, i = 1, 2.

In practise, many f one encounters are C1 in their domains of definition.

Theorem 2.18 (Picard-Lindelöf Theorem). Consider (2.3) where f ∈ C(R) satisfies
the Lipschitz condition on R = [x0−a, x0 +a]× [y0− b, y0 + b]. There exist a′ ∈ (0, a) and
y ∈ C1[x0 − a′, x0 + a′], y0 − b ≤ y(x) ≤ y0 + b for all x ∈ [x0 − a′, x0 + a′], solving (2.3).

From the proof one will see that a′ can be taken to be any number satisfying

0 < a′ < min{a, b
M
,

1

L∗
},

where M = sup{|f(x, y)| : (x, y) ∈ R}.

We first convert (2.3) into a single integral equation.

Proposition 2.19. Setting as in Theorem 2.17, every solution y of (2.3) from [x0 −
a′, x0 + a′] to [y0 − b, y0 + b] satisfies the equation

y(x) = y0 +

ˆ x

x0

f(x, y(x)) dx. (2.4)

Proof. When y satisfies y′(x) = f(x, y(x)) and y(x0) = y0, (2.4) is a direct consequence of
the fundamental theorem of calculus (first form). Conversely, when y(x) is continuous on
[x0 − a′, x0 + a′], f(x, y(x)) is also continuous on the same interval. By the fundamental
theorem of calculus (second form), the left hand side of (2.4) is continuously differentiable
on [x0 − a′, x0 + a′] and solves (2.3).

Note that in this proposition we do not need the Lipschitz condition; only the conti-
nuity of f is needed.
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Proof of Theorem 2.17. Instead of solving (2.3) directly, we look for a solution of (2.4).
We will work on the metric space X = {f ∈ C[x0 − a′, x0 + a′] : f(x) ∈ [y0 − b, y0 +
b], f(x0) = y0} with the uniform metric. It is easily verified that it is a complete metric
space. The number a′ will be specified below.

We are going to define a contraction on X. Indeed, for y ∈ X, define T by

(Ty)(x) = y0 +

ˆ x

x0

f(x, y(x)) dx.

First of all, for every y ∈ X, it is clear that f(x, y(x)) is well-defined and Ty ∈ C[x0 −
a′, x0 + a′]. To show that it is in X, we need to verify y0 − b ≤ (Ty)(x) ≤ y0 + b
for all x ∈ [x0 − a′, x0 + a′]. We claim this holds if we choose a′ satisfying a′ ≤ b/M ,
M = sup {|f(x, y)| : (x, y) ∈ R}. For,

|(Ty)(x)− y0| =
∣∣∣∣ˆ x

x0

f(x, y(x)) dx

∣∣∣∣
≤M |x− x0|
≤Ma′

≤ b.

Next, we claim T is a contraction on X when a′ is further restricted to a′ ≤ 1/(2L∗),
where L∗ is the Lipschitz constant for f . For,

|(Ty2 − Ty1)(x)| =
∣∣∣∣ˆ x

x0

f(x, y2(x))− f(x, y1(x)) dx

∣∣∣∣
≤
ˆ x

x0

∣∣f(x, y2(x))− f(x, y1(x))
∣∣ dx

≤ L∗
ˆ x

x0

|y2(x)− y1(x)| dx

≤ L∗ sup
x∈I
|y2(x)− y1(x)| |x− x0|

≤ L∗a′ sup
x∈I
|y2(x)− y1(x)|

≤ 1

2
sup
x∈I
|y2(x)− y1(x)| ,

where I = [x0 − a′, x0 + a′]. It follows that

d∞(Ty2, T y1) ≤
1

2
d∞(y2, y1)

where d∞ is the uniform metric d∞(f, g) ≡ ‖f − g‖∞ for f, g ∈ C[x0 − a′, x0 + a′]. Now
we can apply the contraction mapping principle to conclude that Ty = y for some y, and
y solves (2.3). We have shown that (2.3) admits a solution in [x0 − a′, x0 + a′] where a′

can be chosen to be min{b/M, 1/(2L∗)}. Apparently the same conclusion holds when 2 is
replaced by any number greater than 1 in this expression.
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We formulate a uniqueness and extension result in the following proposition.

Proposition 2.20. Let y1 and y2 be solutions to (2.3) on closed and bounded intervals
I1 and I2 containing x0 in its interior respectively. Under the Lipschitz condition on f ,
y1 and y2 coincide on I1 ∩ I2. Therefore, the function y which is equal to y1 on I1 and y2
on I2 is a solution to (2.3) on I1 ∪ I2.

Proof. Let J = I1 ∩ I2 ≡ [α, β] and set z = sup{x : y1 ≡ y2 on [x0, x]}. We claim that
z = β. For, if z < β, by continuity y1(z) = y2(z). For x ∈ [α, β], we have

|y1(x)− y2(x)| =
∣∣∣∣ˆ x

z

f(t, y1(t))− f(t, y2(t)) dt

∣∣∣∣
≤ L∗

ˆ x

z

|y1(t)− y2(t)| dt.

Let x ∈ J = [z−1/(2L∗), z+1/(2L∗)]∩[α, β] and |y1(x1)− y2(x1)| = maxx∈J |y1(x)− y2(x)|.
Then

max
J
|y1(x)− y2(x)| = |y1(x1)− y2(x1)|

≤ L∗max
J
|y1(x)− y2(x)| |x1 − z|

≤ 1

2
max
J
|y1(x)− y2(x)| ,

which forces y1 ≡ y2 on [z − 1/(2L∗), z + 1/(2L∗)] ∩ [α, β]. It means that y1 and y2
coincide on [x0,min{z + 1/2L∗, β}], contradicting the definition of z. Hence y1 and y2
must coincide on [x0, β]. A similar argument shows that they coincide on [α, x0].

A consequence of Theorem 2.17 and Proposition 2.19 is the existence of a maximal
solution.

Theorem 2.21. Consider (2.3) where f is a continuous function on the open set G such
that it satisfies the Lipschitz condition on every compact subset of G. Then there exists a
solution y∗ to (2.3) defined on some (α, β) satisfying

(a) Whenever y is a solution of (2.3) on some interval I, I ⊂ (α, β) and y = y∗ on I .

(b) If β is finite, the solution escapes from every compact subset of G eventually. Similar
results holds at α.

“The solution escapes from every compact subset of G eventually” means, for each
compact K ⊂ G, there exists a small δ > 0 such that (x, y∗(x)) ∈ G\K for x ∈ [β− δ, β).
When G is R2, it means that y∗ either tends to ∞ or −∞ as x approaches β when β
is finite. When β is infinite, the solution could tend to positive or negative infinity or
oscillate up and down infinitely as x goes to∞. In contrast, when β is finite, the solution
could either goes to ∞ or −∞ approaching β. The case of oscillation is excluded.
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The Lipschitz condition on f sounds a little complicated. We could replace it by a
simpler condition. Indeed, the subsets

Kn = {x ∈ G : dist(x, ∂G) ≥ 1/n} ∩Bn(0), n ≥ 1,

are compact and G =
⋃∞
n=1Kn. Clearly every compact subset is contained in some Kn for

sufficiently large n. With this understanding, the Lipschitz condition on f may be recast
as, there exist Ln, n ≥ 1, such that∣∣f(x, y2)− f(x, y1)

∣∣ ≤ Ln|y1 − y1|, ∀y1, y2 ∈ Kn.

In view of this theorem, it is legal to call this maximal solution the solution of (2.3) and
the interval (α, β) the maximal interval of existence.

Proof. Let I be the collection of all closed, bounded intervals I containing x0 over which
a solution of (2.3) exists and let I∗ be the union of the intervals in I. Clearly I∗ is again
an interval, denote its left and right endpoints by α and β respectively. By Proposition
2.20 there is a solution y∗ of (2.3) defined on (α, β). When β is finite, let us show
that the solution escapes from every compact subset eventually. Let K be a compact
subset of G and suppose on the contrary that there exists {xk} ⊂ (α, β), xk → β, but
(xk, y

∗(xk)) ∈ K for all k. By compactness, we may assume y∗(xk) converges to some z
in K (after passing to a subsequence if necessary). Since dist((β, z), ∂G) > 0, we can find
a rectangle [β − r, β + r] × [z − ρ, z + ρ] inside G. Then, as this is a compact subset,
f satisfies the Lipschitz condition on this rectangle. By Theorem 2.18, we could use
(xk, y

∗(xk)) as the initial data to solve (2.3). The range of this solution would be some
interval [xk − r′, xk + r′] where r′ is independent of k. Since xk approaches β, for large k
β ∈ [xk−r′, xk+r′]. But then by Proposition 2.20, the solution y∗ can be extended beyond
β, contraction holds. We conclude that the solution must escape from any compact subset
eventually. A similar argument applies to the left endpoint α.

Example 2.21. Consider

f(x, y) =
x

1− y
, (x, y) ∈ G ≡ (−∞,∞)× (−∞, 1)

and x0 = y0 = 0 in (2.3). Since f ∈ C1(G), the setting of Theorem 2.1 is satisfied. This
equation is separable and the solution is readily found to be

y(x) = 1−
√

1− x2.

So the maximal interval of existence is given by (−1, 1). As x → ±1, (x, y(x)) hits the
horizontal line y = 1 as asserted by Theorem 2.21.

We point out that the existence part of Picard-Lindelöf theorem still holds without
the Lipschitz condition. We will prove this in the next chapter. However, the solution
may not be unique.
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Example 2.22. Consider the Cauchy problem y′ = |y|α, α ∈ (0, 1), y(0) = 0. The
function f(x) = |x|α is Hölder continuous but not Lipschitz continuous. While y1 ≡ 0 is
a solution,

y2 = (1− α)
1

1−α |x|
1

1−α

is also a solution. In fact, there are infinitely many solutions! Can you write them down?

Theorem 2.18, Propositions 2.20 and 2.21 are valid for systems of differential equations.
Without making things too clumsy, we put all results in a single theorem. First of all,
the Cauchy problem for systems of differential equations is{

dyj
dx

= fj(x, y1, y2, · · · , yN),

yj(x0) = yj0,

where j = 1, 2, · · · , N . By setting y = (y1, y2, · · · , yN) and f = (f1, f2, · · · , fN), we can
express it as in (2.3) but now both y and f are vectors.

Essentially following the same arguments as the case of a single equation, we have

Theorem 2.22 (Picard-Lindelöf Theorem for Systems). Consider (2.3) where f
satisfies a Lipschitz condition on R = [x0 − a, x0 + a]× J .

(a) There exist a′ ∈ (0, a) and a unique C1-function y on [x0 − a′, x0 + a′] solving (2.3).

(b) Let y1 and y1 be two solutions of (2.3) on closed, bounded intervals I1 and I2 respec-
tively. The y1 and y2 coincide on I1 ∩ I2.

Here J stands for
∏n

j=1[y0j − bj, y0j + bj] and the Lipschitz condition on f should be
interpreted as

d2(f(x, y1), f(x, y2)) ≤ Ld2(y1, y2), ∀x ∈ [x0 − a, x0 + a].

There is also a version on systems corresponding to Theorem 2.21. We will omit it.

We remind you that there is a standard way to convert the Cauchy problem for higher
order differential equation (m ≥ 2){

y(m) = f(x, y, y′, · · · , y(m−1)),
y(x0) = y0, y

′(x0) = y1, · · · , y(m−1)(x) = ym−1,

into a system of first order differential equations. As a result, we also have a corresponding
Picard-Lindelöf theorem for higher order differential equations as well as the existence of
a maximal solution. I will let you formulate these results.

Comments on Chapter 2. A topology on a set X is a collection of sets τ consisting the
empty and X itself which is closed under arbitrary union and finite intersection. Each set
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in τ is called an open set. The pair (X, τ) is called a topological space. From Proposition
2.2 we see that the collection of all open sets in a metric space (X, d) forms a topology
on X. This is the topological space induced by the metric. Metric spaces constitute a
large class of topological spaces, but not every topological space comes from a metric.
However, from the discussions in Section 2 we know that continuity can be defined solely
in terms of open sets. It follows that continuity can be defined for topological spaces, and
this is crucial for many further developments. In the past, metric spaces were covered in
Introductory Topology. Feeling that the notion of a metric space should be learned by
every math major, we move it here. This restructure of curriculum also leaves room for
more algebraic topology in Introductory Topology.

Wiki gives a nice summary of metric spaces under “metric space”.

Many theorems in finite dimensional space are extended to infinite dimensional normed
spaces when the underlying closed, bounded set is replaced by a compact set. Thus it is
extremely important to study compact sets in a metric space. We will study compact sets
in C[a, b] in Chapter 3. A theorem of Arzela-Ascoli provides a complete characterization
of compact sets in this space.

There are two popular constructions of the real number system, Dedekind cuts and
Cantor’s Cauchy sequences. Although the number system is fundamental in mathematics,
we did not pay much attention to its rigorous construction. It is too dry and lengthy to be
included in MATH2050 . Indeed, there are two sophisticate steps in the construction of
real numbers from nothing, namely, the construction of the natural numbers by Peano’s
axioms and the construction of real numbers from rational numbers. Other steps are much
easier. Cantor’s construction of the irrationals from the rationals is very much like the
proof of Theorem 2.15. You may google under the key words “Peano’s axioms, Cantor’s
construction of the real numbers, Dedekind cuts” for more.

The contraction mapping principle, or Banach fixed point theorem, was found by the
Polish mathematician S Banach (1892-1945) in his 1922 doctoral thesis. He is the founder
of functional analysis and operator theory. According to P Lax, “During the Second World
War, Banach was one of a group of people whose bodies were used by the Nazi occupiers
of Poland to breed lice, in an attempt to extract an anti-typhoid serum. He died shortly
after the conclusion of the war.” The interested reader should look up his biography at
Wiki.

An equally famous fixed point theorem is Brouwer’s fixed point theorem. It states
that every continuous map from a closed ball in Rn to itself admits at least one fixed
point. Here it is not the map but the geometry, or more precisely, the topology of the
ball matters. You will learn it in Introductory Topology.
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Picard-Lindelöf theorem or the fundamental existence and uniqueness theorem of dif-
ferential equations was mentioned in Ordinary Differential Equations and now its proof
is discussed in details. Of course, the contributors also include Cauchy and Lipschitz.
Further results without the Lipschitz condition can be found in Chapter 3. A classic text
on ordinary differential equations is “Theory of Ordinary Differential Equations” by Cod-
dington and Levinson. V.I. Arnold’s ”Ordinary Differential Equations” is also a popular
text.

Although metric space is a common topic, I found it difficult to fix upon a single
reference book. Rudin’s Principles covers some metric spaces, but his attention is mainly
on the Euclidean space. Moreover, for a devoted student, this book should have been
studied in a previous summer. Finally, I decide to list Dieudonne’s old book “Foundation
of Modern Analysis” as the only reference. This is the book from which I learned the
subject, but it seems a bit out-dated and not easy to follow. Another good reference
which is more comprehensible but contains less content is G.F. Simmons “Introduction
to Topology and Modern Analysis”. The chapters on metric and topological spaces are
highly readable.


